In [1]:
# Import libraries
import pandas as pd
import sys
from sqlalchemy import create_engine, MetaData, Table, select
In [2]:
print 'Python version ' + sys.version
print 'Pandas version: ' + pd.__version__
In [3]:
# Parameters
ServerName = "RepSer2"
Database = "BizIntel"
TableName = "DimDate"
# Create the connection
engine = create_engine('mssql+pyodbc://' + ServerName + '/' + Database)
conn = engine.connect()
# Required for querying tables
metadata = MetaData(conn)
# Table to query
tbl = Table(TableName, metadata, autoload=True, schema="dbo")
#tbl.create(checkfirst=True)
# Select all
sql = tbl.select()
# run sql code
result = conn.execute(sql)
# Insert to a dataframe
df = pd.DataFrame(data=list(result), columns=result.keys())
# Close connection
conn.close()
print 'Done'
All the files below will be saved to the same folder the notebook resides in.
In [4]:
df.to_csv('DimDate.csv', index=False)
print 'Done'
In [5]:
df.to_excel('DimDate.xls', index=False)
print 'Done'
In [6]:
df.to_csv('DimDate.txt', index=False)
print 'Done'
Author: David Rojas